dmagin (dmagin) wrote,
dmagin
dmagin

Categories:

3-й закон Кирхгофа

Продвижение по теме потоков в почти симметричных графах продолжается.
Было (кратко, ес-но) изучено состояние дел в теории электрических сетей (по работам "Random Walks and Electrical Networks", "Inverse Problems for Electrical Networks"). Обнаружено, что люди почему-то не используют мой прием - задание разности потенциалов в сети через введение асимметричного ребра. А мучаются со стандартной задачей Дирихле - то есть через задание краевых условий на потенциалы. Зря. Теряется общность и простота "графического" подхода. (Правда меня немного смущает, что такую асимметрию можно задать, просто воткнув в землю диод, без всяких источников тока).

Что еще понято. Наконец-то постиг, как доказывается пресловутый инвариант для графа любой размерности. Для этого пришлось, правда, ввести 3-й закон Кирхгофа )). Ну и наиболее интересная часть - продвинулся в решении обратной задачи для электрических сетей - вычисление проводимостей графа на основе известных разностей потенциала. Поскольку материала много, то разобью на несколько постов.

Начнем с Кирхгофа.

Как известно, Кирхгофу приписывают два правила, которые полезны для расчета электрических цепей:
1) Сумма токов в каждом узле равна нулю - мы это называем балансом потоков.
2) Сумма разностей потенциалов по замкнутому контуру равна нулю (про всякие ЭДС и пр. мы здесь намеренно опускаем,- они нам без надобности).- Это тоже очевидность, на которой не останавливаемся.

А вот про 3-й закон (скорее, правило), похоже никто не знает. Включая самого Кирхгофа. А он, оказывается, тоже полезен. И важен для всех, кто занимается электроразведкой, кто подает ток/напряжение в одном месте, а снимает в другом.

В электротехнике известен принцип эквивалентности - если мы меняем местами питающие электроды (по которым подаем ток) и съемные (снимаем напряжение), то результат остается тот же самым. Вроде бы очевиден,- связан с линейностью уравнений. Для графов я особо не вникал - почему так происходит. Проверил - действительно так.
Как проверяется. Берем симметричный граф (аналог электрической сети). И вводим асимметрию, например, ребра ij,- то есть вводим разность между проводимостями: dC = Cij - Сji. Смотрим - чему равна разность потенциалов между любыми произвольными узлами графа (m и n, например). Потом восстанавливаем симметричность ребра ij и вводим асимметрию между узлами m и n. А разность меряем между i и j (как много приходится писать) - полученные разности Umn (в 1-м случае) и Uij (во 2-м) - равны. Это и есть принцип эквивалентности.

Теперь допустим, что мы снимаем разность потенциалов Umn с одних и тех же узлов (измерительные электроды фиксированы), но при этом последовательно меням расположение питающих электродов. Например, сначала задали ток через узлы 12 (измерили Umn), потом через 23 (снова измерили Umn), потом - через 34 и т.д. Теперь мы можем сформулировать 3-е правило:
Если путь, по которому меняются питающие электроды,- замкнут (12-23-34-41), то сумма измеренных разностей потенциалов Umn будет равна нулю.

Фактически, 3-е правило - это использование 2-го закона совместно с принципом эквивалентности.
Почему данное правило не пользуется популярностью (неизвестно)? Скорее всего потому, что в традиционной электротехнике (и электроразведке тоже) редко меняют положение питающих электродов.

Где мы можем применить данное правило?
Ну, доказать, наконец-то наш инвариант (след. пост).
Но более интересно - понять - какие же измерения нам нужно провести (а какие, наборот - уже будут лишними), чтобы решить обратную задачу (для электрических сетей, например). Результаты данного исследования планируется изложить через пост.
Tags: Графы, Электрометрия
Subscribe
  • Post a new comment

    Error

    Anonymous comments are disabled in this journal

    default userpic

    Your IP address will be recorded 

  • 0 comments